Name:

Date: _____

- 1. A circuit consists of a resistor and a battery.

 Increasing the voltage of the battery while keeping the temperature of the circuit constant would result in an increase in
 - A. current, only
 - B. resistance, only
 - C. both current and resistance
 - D. neither current nor resistance
- 2. An electric circuit contains a variable resistor connected to a source of constant voltage. As the resistance of the variable resistor is increased, the power dissipated in the circuit
 - A. decreases
- B. increases
- C. remains the same
- 3. The diagram below represents a simple circuit consisting of a variable resistor, a battery, an ammeter, and a voltmeter.

What is the effect of increasing the resistance of the variable resistor from 1000Ω to 10000Ω ? [Assume constant temperature.]

- A. The ammeter reading decreases.
- B. The ammeter reading increases.
- C. The voltmeter reading decreases.
- D. The voltmeter reading increases.

4. Circuit *A* has four 3.0-ohm resistors connected in series with a 24-volt battery, and circuit *B* has two 3.0-ohm resistors connected in series with a 24-volt battery. Compared to the total potential drop across circuit *A*, the total potential drop across circuit *B* is

A. one-half as great

B. twice as great

C. the same

D. four times as great

5. The diagram below represents a circuit consisting of two resistors connected to a source of potential difference.

What is the current through the 20.-ohm resistor?

A. 0.25 A

B. 6.0 A

C. 12 A

D. 4.0 A

6. Three resistors of 20 ohms, 30 ohms, and 60 ohms, respectively, are connected in series with a battery. A current of 2.0 amperes will flow through this circuit when the potential difference of the battery is

A. 10 V

B. 20 V

, (

C. 110 V D

7. In the circuit diagram below, two 4.0-ohm resistors are connected to a 16-volt battery as shown.

The rate at which electrical energy is expended in this circuit is

- A. 8.0 W B. 16 W C. 32 W D. 64 W
- 8. In the circuit represented by the diagram below, what is the reading of voltmeter V?

- A. 20. V B. 2.0 V C. 30. V D. 40. V
- 9. Base your answer(s) to the following question(s) on the diagram given.

What is the current in resistor R_2 ?

- A. 8.00 A
- B. 2.00 A
- C. 16.0 A
- D. 4.00 A
- 10. What power is supplied by the source?
 - A. 24.0 W
- B. 90.0 W
- C. 3.00 W
- D. 192 W

- 11. What is the total resistance of the circuit?
 - A. 0.500Ω
- B. 2.00Ω
- C. 3.00 Ω
- D. 4.00Ω
- 12. The voltage drop across R_1 is
 - A. 0 V
- B. 8.00 V
- C. 12.0 V
- D. 24.0 V
- 13. As more resistors are added to a series circuit, the total resistance of a circuit
 - A. decreases
- B. increases
- C. remains the same
- 14. A 6.0-ohm lamp requires 0.25 ampere of current to operate. In which circuit below would the lamp operate correctly when switch *S* is closed?

15. Base your answer(s) to the following question(s) on the information and diagram below.

A 50.-ohm resistor, an unknown resistor R, a 120-volt source, and an ammeter are connected in a complete circuit. The ammeter reads 0.50 ampere.

a. Calculate the equivalent resistance of the circuit. [Show all work, including the equation and substitution with units.]

b. Determine the value of resistance of the unknown resistor R.